skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weickenmeier, Johannes"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Abstract An unsupervised machine learning method is introduced to align medical images in the context of the large deformation elasticity coupled with growth and remodeling biophysics. The technique, which stems from the principle of minimum potential energy in solid mechanics, consists of two steps: Firstly, in the predictor step, the geometric registration is achieved by minimizing a loss function composed of a dissimilarity measure and a regularizing term. Secondly, the physics of the problem, including the equilibrium equations along with growth mechanics, are enforced in a corrector step by minimizing the potential energy corresponding to a Dirichlet problem, where the predictor solution defines the boundary condition and is maintained by distance functions. The features of the new solution procedure, as well as the nature of the registration problem, are highlighted by considering several examples. In particular, registration problems containing large non-uniform deformations caused by extension, shearing, and bending of multiply-connected regions are used as benchmarks. In addition, we analyzed a benchmark biological example (registration for brain data) to showcase that the new deep learning method competes with available methods in the literature. We then applied the method to various datasets. First, we analyze the regrowth of the zebrafish embryonic fin from confocal imaging data. Next, we evaluate the quality of the solution procedure for two examples related to the brain. For one, we apply the new method for 3D image registration of longitudinal magnetic resonance images of the brain to assess cerebral atrophy, where a first-order ODE describes the volume loss mechanism. For the other, we explore cortical expansion during early fetal brain development by coupling the elastic deformation with morphogenetic growth dynamics. The method and examples show the ability of our framework to attain high-quality registration and, concurrently, solve large deformation elasticity balance equations and growth and remodeling dynamics. 
    more » « less
  3. Abstract Indentation testing is the most common approach to quantify mechanical brain tissue properties. Despite a myriad of studies conducted already, reported stiffness values vary extensively and continue to be subject of study. Moreover, the growing interest in the relationship between the brain's spatially heterogeneous microstructure and local tissue stiffness warrants the development of standardized measurement protocols to enable comparability between studies and assess repeatability of reported data. Here, we present three individual protocols that outline (1) sample preparation of a 1000‐µm thick coronal slice, (2) a comprehensive list of experimental parameters associated with the FemtoTools FT‐MTA03 Micromechanical Testing System for spherical indentation, and (3) two different approaches to derive the elastic modulus from raw force‐displacement data. Lastly, we demonstrate that our protocols deliver a robust experimental framework that enables us to determine the spatially heterogeneous microstructural properties of (mouse) brain tissue. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Mouse brain sample preparation Basic Protocol 2: Indentation testing of mouse brain tissue using the FemtoTools FT‐MTA03 Micromechanical Testing and Assembly System Basic Protocol 3: Tissue stiffness identification from force‐displacement data 
    more » « less
  4. Nano-indentation is a promising method to identify the constitutive parameters of soft materials, including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation allows mechanical interrogation where traditional methods may fail. However, because nano-indentation does not yield a homogeneous deformation field, interpreting the resulting load–displacement curves is non-trivial and most investigators resort to simplified approaches based on the Hertzian solution. Unfortunately, for small samples and large indentation depths, these solutions are inaccurate. We set out to use machine learning to provide an alternative strategy. We first used the finite element method to create a large synthetic data set. We then used these data to train neural networks to inversely identify material parameters from load–displacement curves. To this end, we took two different approaches. First, we learned the indentation forward problem, which we then applied within an iterative framework to identify material parameters. Second, we learned the inverse problem of directly identifying material parameters. We show that both approaches are effective at identifying the parameters of the neo-Hookean and Gent models. Specifically, when applied to synthetic data, our approaches are accurate even for small sample sizes and at deep indentation. Additionally, our approaches are fast, especially compared to the inverse finite element approach. Finally, our approaches worked on unseen experimental data from thin mouse brain samples. Here, our approaches proved robust to experimental noise across over 1000 samples. By providing open access to our data and code, we hope to support others that conduct nano-indentation on soft materials. 
    more » « less
  5. Abstract Aging-related periventricular white matter hyperintensities (pvWMHs) are a common observation in medical images of the aging brain. The underlying tissue damage is part of the complex pathophysiology associated with age-related microstructural changes and cognitive decline. PvWMH formation is linked to blood–brain barrier dysfunction from cerebral small vessel disease as well as the accumulation of cerebrospinal fluid in periventricular tissue due to progressive denudation of the ventricular wall. In need of a unifying theory for pvWMH etiology, image-based finite-element modeling is used to demonstrate that ventricular expansion from age-related cerebral atrophy and hemodynamic loading leads to maximum mechanical loading of the ventricular wall in the same locations that show pvWMHs. Ventricular inflation, induced via pressurization of the ventricular wall, creates significant ventricular wall stretch and stress on the ependymal cells lining the wall, that are linked to cerebrospinal fluid leaking from the lateral ventricles into periventricular white matter tissue. Eight anatomically accurate 3D brain models of cognitively healthy subjects with a wide range of ventricular shapes are created. For all models, our simulations show that mechanomarkers of mechanical wall loading are consistently highest in pvWMHs locations ( p < 0.05). Maximum principal strain, the ependymal cell thinning ratio, and wall curvature are on average 14%, 8%, and 24% higher in pvWMH regions compared to the remaining ventricular wall, respectively. Computational modeling provides a powerful framework to systematically study pvWMH formation and growth with the goal to develop pharmacological interventions in the future. 
    more » « less